Generative Ir
Language Mode

FlexGen: High-T

fere

s with a Si

ﬁ

ce O

Nrougrh

put
Large

I

gle GPU

Ying Sheng 1 Lianmin Zheng 2 Binhang Yuan 3 Zhuohan Li 2 Max
Ryabinin 4 5 Daniel Y. Fu 1 Zhigiang Xie 1 Beidi Chen 6 7 Clark Barrett 1
Joseph E. Gonzalez 2 Percy Liang 1 Christopher Re” 1 lon Stoica 2 Ce

Zhang

1 Stanford University 2UC Berkeley 3ETH Zurich 4Yandex 5HSE University
6Meta 7Carnegie Mellon University.

Motivation 1: Making Large Models Accessible

Motivation 2: Throughput-Oriented LLM Use

Ccases

Latency-sensitive Tasks
(e.g., Chatbot)

Throughput-Oriented Tasks
(e.g., benchmarking,
information extraction, data
wrangling, Text/forms)

How to efficiently run LLMs with limited resources

GPT-175B NVIDIA T4

Parameter size: 325 GB Memory capacity: 16 GB

Results: Latency-throughput Trade-off

v —%- FlexGen (c) FlexGen —«— DeepSpeed —k— Accelerate
c
¢ OPT-175B . OPT-30B Workload:
S 0 _ =% e)
R R 2 AT * Running OPT-175B on a T4 GPU
S | ¥~ *,_-‘
£ 2|
3 2-4i 4 Existing systems:
5 27N 4 { * Throughput of 0.01 token/s
c - ol .
S * I 53| * GPU utilization < 1%
O 5-8 .
: 2 11 13 s s oW * Bound by a very small batch size
U] Latency (s) Latency (s) (<=2)
Figure 1. The total latency for a block and throughput trade-offs of FlexGen:

three offloading-based systems for OPT-175B (left) and OPT-30B
(right) on a single NVIDIA T4 (16 GB) GPU with 208 GB CPU
DRAM and 1.5TB SSD. FlexGen achieves a new Pareto-optimal
frontier with 100 x higher maximum throughput for OPT-175B.
Other systems cannot further increase throughput due to out-of-
memory issues. “(¢)” denotes compression.

* 69x higher throughput
e 128x larger batch size
e Also achieving lower latency

OPT: Open Pre-trained Transformer Language Model

Related work

* Prior efforts to lower resource requirements of LLM inference
* Model compression to decrease total memory footprint
* Collaborative inference to amortize inference cost via decentralization
* Offloading to utilize memory from CPU and disk

e Shortcomings:

e Research in the first two directions often assume that the model fits into the
GPU memory

* The third category do not achieve acceptable throughput on a single GPU due
to inefficient 1/O scheduling and tensor placement

Goal

Designing efficient offloading strategies for high-throughput

generative inference, on a single commodity GPU

Method

GPU / 16GB \

1 1268/
Offload LLM to secondary storage and perform computation
part-by-part by partially loading it. CPU / 208¢GB \
2 GB/s

Disk/ 1.5TB \

NVIDIA T4

Challenge 1: efficient offloading strategy

* There are three kinds of tensors: weights, activations, and key-value
(KV) cache.

* Strategy specifies
* what tensors to offload
* where to offload them within the three-level memory hierarchy

* when to offload them during inference

* The batch-by-batch, token-by-token, and layer-by-layer structure of
the computation forms a complex dependency graph

Challenge 2: effective compression strategies

* When combining compression with offloading for high-throughput
inference, the 1/O costs and memory reduction of the weights and KV
cache become more important, motivating alternative compression
schemes

FlexGen: Proposed offloading framework

* FlexGen aggregates memory from the GPU, CPU, and disk, and efficiently
schedules I/O operations, along with possible compression methods and
distributed pipeline parallelism

 Contribution 1:

* Formally define a search space of possible offloading strategies by considering computation
schedule, tensor placement, and computation delegation

» Search space captures a computation order with I/0 complexity within 2x of optimality
e Alinear programming-based search algorithm
e Contribution 2:

* Fine-grained groupwise quantization (Shen et al., 2020), which is suitable for reducing 1/0
costs and memory usage during offloading

* Contribution 3:
* Demonstrate the efficiency of FlexGen by running OPT-175B on NVIDIA T4 (16GB) GPUs

FlexGen: Proposed offloading framework
(cont.)

* Two stages:

* i) the prefill stage which takes a prompt sequence to generate the key-value cache (KV cache)
or each transformer layer of the LLM;

* ii) the decoding stage which utilizes and updates the KV cache to generate tokens step-by-
step

* Considering FP16, the total number of bytes to store the parameters can be
roughly 1 calculated by I(8h,%2 + 4h h,). The total number of bytes to store the KV
cache in peak is 4 x blh,(s +'n).

* Notations:
* b: batchsizebyb
e s: the input sequence length
n: the output sequence length
h1: the hidden dimension of the transformer
h2: the hidden dimension of the second MLP layer
|: the total number of transformer layers

FlexGen: Proposed offloading framework
(cont.)

 OPT-175B model (I =96, hl = 12288, h2 = 49152) takes 325 GB. With
a batch size of b =512, an input sequence length s =512, and an
output sequence length of n = 32, the total memory required to store
the KV cache is 1.2 TB, which is 3.8x the model weights

* Considering an effective batch size b, an input sequence length s, and

an output sequence length of n,

* Latency t is defined as the total number of seconds spent to process the
prompts and generate all the bn tokens

* The generation throughput is defined as bn/t

FlexGen: Proposed offloading framework
(cont.)

* The model has 4 layers and the system generate 3 tokens per prompt
* A square means the computation of a GPU batch for a layer
* The squares with the same color share the same layer weights

Token 0 0 Token 1 o Token 2

d
layer
-

(infinite)

Figure 2. Computational graph of LLM inference.

FlexGen: Proposed offloading framework
(cont.)

* Define a valid path as a path that traverses (i.e., computes) all squares,
while subject to the following constraints:

* A square can only be computed if all squares to its left on the same row were
computed

* To compute a square on a device, all its inputs (weights, activations, cache) must be
loaded to the same device

* After being computed, a square produces two outputs: activations and KV cache. The
activations should be stored until its right sibling is computed. The KV cache should
be stored until the rightmost square on the same row is computed.

* At any time, the total size of tensors stored on a device cannot exceed its memory
capacity.
* The goal is to find a valid path that minimizes the total execution time,
which includes the compute cost and 1/O cost when moving tensors
between devices.

FlexGen: Proposed offloading framework
(cont.)

e Search space
 Compute schedule
* Tensor placement
 Computation delegation

* Cost Model and Policy Search
e Extension to Multiple GPUs

FlexGen: Proposed offloading framework
(cont.)

 All existing systems traverse the graph row-by-row

* Because every two contiguous squares do not share weights, this
schedule has to repeatedly load the weights and incurs huge I/O costs

Token O e Token 1 e Token 2
SR > e Token O ' Token 1 o Token 2

* 11 > »
layer ' i ' S s > o— >
l— o 1 ! layer i i ;
-

batc[ll -+ 1 M M ™ N N N N ¥ N 1 batchI

e = B4 e] Sl e R e | el

Dataset Dataset
(infinite) (infinite)

e = e el —+] e] = *| ol

el - = e - = [l el b | Sa
- ==] e —+| B - e e = o]

i

(a) Row-by-row schedule

Figure 2. Computational graph of LLM inference.

Dataset
(infinite)

FlexGen: Proposed offloading framework
(cont.) -- Search space

* To reduce the I/O costs of the weights, we can traverse the graph column-by-
column.

* All squares in a column share weights, so we can let the weights stay on GPU for
reusing and only load/unload the activations and KV cache.

* Stop when they fill the CPU and disk memory

’ Token 0 o Token 1 L Token 2

i h th I ot

:ayelr ¥ ¥ : batchl " ~ e be -rr -l-r -l-r -rf -I-f -r |

batchI - | 1 el - - - e e o -
- Dataset | block V
e = a] —~ S - e e = e 1 171 f F i J I F i
(infinite) IR RIRZIR IR R I R R IR TN

i Bl - | B | - | e - mal _1! __________

(b) Zig-zag block schedule

Figure 2. Computational graph of LLM inference.

FlexGen: Proposed offloading framework
(cont.) -- Search space

FlexGen: Proposed offloading framework
(cont.) -- Search space

Algorithm 1 Block Schedule with lappi : I : :
gorithm 1 Block Schedule with Overlapping * Another typical optimization is
for : = 1 to generation_length do .
for 7 = 1 to num_layers do ove rla pp| ng
// Compute a block with multiple GPU batches
for k = 1 t0 num GPU batches do * The weights load of the next layer
oad the weight of the next layer _ _
loadweight(i,j +1,k) * Cache/activation load of the next batch
/I Store the cache and activation of the prev batch]]]
store.activation(i,j,k — 1) * Cache/activation store of the previous
store_cache(,j,k — 1)
// Load the cache and activation of the next batch batCh
load_cache(i, j, k + 1 .
lEZd_Ziiiigtjion(i,j),k +1) * The computation of the current batch.
// Compute this batch

compute(t, j, k)
/I Synchronize all devices
synchronize()
end for
end for
end for

FlexGen: Proposed offloading framework
(cont.) — Tensor placement

* How to store these tensors within the memory hierarchy

* Three variables wg, wc, and wd to define the percentages of weights stored on GPU,
CPU, and disk respectively.

* Three variables hg, hc, hd to define the percentages of activations
* Three variables cg, cc, cd for the KV cache

* Partition the weights
* At the model granularity (e.g., assign 50% of the layers in a model to the GPU)
» At the layer granularity (e.g., assign 50% of the tensors in a layer to the GPU)
* At the tensor granularity (e.g., assign 50% of the elements in a tensor to the GPU)

* Coarser granularity leads to lower runtime overhead but it is less flexible
and its cost is difficult to analyze

e Use layer granularity for weights, and tensor granularity for activations and
the KV cache.

FlexGen: Proposed offloading framework
(cont.) — Computation delegation

 Computing the attention scores on the GPU requires moving the
entire KV cache to the GPU, which incurs a substantial I/O cost as the

KV cache is huge

* Computing the attention score on the CPU does not require moving
the KV cache. It only requires moving the activations from the GPU to

the CPU.

* For long sequences (e.g., s = 512), it is better to compute the
attention scores on the CPU if the associated KV cache is not stored

on the GPU.

FlexGen: Proposed offloading framework
(cont.) — Cost Model and Policy Search

* The cost model predicts the latency during prefill for one layer denoted as
Tpre, and the averaged latency during decoding for one layer denoted as

Tgen in one block

* The total latency for computing a block can then be estimated as:
e T=Tpre-1+Tgen-(n-1)

* Tpre can be estimated as Tpre = max(ctogp , gtocp , dtocp, ctodp , compp),
where ctogp , gtocp, dtocp, ctodp, compp denote the latency of read
from CPU to GPU, write from GPU to CPU, read from disk to CPU, write
from CPU to disk, computation, respectively, during prefill for one layer

* Tgen can be estimated as Tgen = max(ctog§ , gtocg , dtocg, ctodg , compg),
with ctogg , gtocg, dtocg, ctodg , compg denoting the latency of read from
CPU to GPU, write from GPU to CPU, read from disk to CPU, write from CPU

to disk, computation, respectively, during decoding for one layer

FlexGen: Proposed offloading framework
(cont.) — Cost Model and Policy Search

* A policy includes 11 variables: block size bls, GPU batch size gbs,
weight placement wg, wc, wd, activation placement hg, hc, hd, and
KV cache placement cg, cc, cd.

* Enumerate a few choices of (bls, gbs) tuple. Typically, gbs is a multiple
of 4, and bls is less than 20 so there are not too many choices.

* Then with the fixed bls, gbs, finding the best placement p = (wg, wc,
wd, cg, cc, cd, hg, hc, hd) becomes a linear programming problem

shown in Eq. (1).

FlexGen: Proposed offloading framework
(cont.) — Cost Model and Policy Search

min
p
s.t. gpu peak memory

cpu peak memory
disk peak memory
wqg + we + wd

cg + cc + cd

hg + hc + hd

T /bls

ANVANVA

gpu mem capacity
cpu mem capacity

disk mem capacity
1

1
1

(1)

FlexGen: Proposed offloading framework
(cont.) — Extension to Multiple GPUs

* If we are given more GPUs and more CPUs, model parallelism can be
utilized to reduce the memory pressure of each GPU

* Two kinds of model parallelisms:

* Tensor: reduce the single-query latency

* Pipeline parallelism: achieve good scaling on throughput due to low
communication cost

* FlexGen implements pipeline parallelism

* Use pipeline parallelism by equally partitioning an I-layer LLM on m
GPUs, and then the execution of all GPUs follows the same pattern

FlexGen: Proposed offloading framework
(cont.) — Approximate Methods

* Group-wise Quantization

* Both the weights and KV cache can be directly quantized into 4-bit integers
without any retraining or calibration on OPT-175B, all while preserving similar
accuracy

* Previous quantization methods are for accelerated computation, the goal of
quantization in this case is primarily for compression and reducing 1/O costs

* Choose a fine-grained quantization format in favor of a high compression ratio and
dequantize the tensors back to FP16 before computation
* Given a tensor, choose g contiguous elements along a certain dimension as a
group. For each group, we compute the min and max of the group elements
and quantize each element x into b-bit integers by

X quant = found {(x-min)/(max-min) x (2° - 1)}

FlexGen: Proposed offloading framework
(cont.) — Sparse Attention

* Sparse attention

* We demonstrate that the sparsity of self-attention can be exploited by only
loading the top 10% attention value cache on OPT-175B

* Top-K sparse approximation

* After computing the attention matrices, for each query, calculate the indices of its Top-K
tokens from the K cache

e Simply drop the other tokens and only load a subset of the V cache according to the
indices

Evaluation

* Hardware
* NVIDIA T4 GPU instances from Google Cloud

Table 1. Hardware Specs

Device Model Memory
GPU NVIDIA T4 16 GB
CPU Intel Xeon @ 2.00GHz 208 GB

Disk Cloud default SSD (NVMe) 1.5 TB
d The read bandWidtll il wedld IJd VAN AL h\JI—lIJ ATTWMAM LI VVIILWVWS NMNUUI I Nidth iS about 1GB/S

* Model
 OPT models with 6.7B to 175B parameters

 GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022), and BLOOM (Scao et al.,
2022) share a similar structure

Evaluation

* Workload
* Synthetic datasets where all prompts are padded to the same length: 512 and 1024
* The system is required to generate 32 tokens for each prompt

e Baseline
* DeepSpeed ZeRO-Inference (Aminabadi et al., 2022)
e Hugging Face Accelerate (HuggingFace, 2022)

* Both of them use the row-by-row schedule and can only put cache/activations on GPU
* Petals (Borzunov et al., 2022; Ryabinin et al., 2023)

* Implementation
* FlexGen is implemented on top of PyTorch (Paszke et al., 2019)

* FlexGen manages multiple CUDA streams and CPU threads to overlap /0 with
compute

* FlexGen creates files for tensors stored on the disk and maps them as virtual
memory to access them

Evaluation

» Offloading

* Maximum throughput benchmark

Seq. length 512 1024

Model size 6.7B 30B 175B 6.7B 30B 175B

Accelerate 25.12 0.62 0.01 13.01 0.31 0.01

DeepSpeed 928 0.60 0.01 459 029 OOM 1 GPU
Petals 825 284 0.08 6.56 1.51 0.06

FlexGen 2526 7.32 0.69 1372 3.50 0.35

FlexGen (c) 29.12 870 1.12 13.18 3.98 0.42

Table 3. The scaling performance on 4 GPUs. The prompt se-

quence length is 512. The number of GPUs is denoted in the

parenthesis. Generation throughput (token/s) counts the time cost

of both prefill and decoding while decoding throughput only counts 4 GPUs
the time cost of decoding assuming prefill is done.

Metric Generation Throughput Decoding Throughput

Model size 6.7B 30B 175B 6.7B 30B 175B
FlexGen (1) 25.26 7.32 0.69 3828 11.52 0.83
FlexGen (4) 201.12 23.61 233 764.65 48.94 3.86
DeepSpeed (4) 50.00 640 005 5020 640 0.05

Evaluation

» Offloading

* Latency-throughput trade-off

Generation throughput (token/s

Figure 1. The total latency for a block and throughput trade-offs of
three offloading-based systems for OPT-175B (left) and OPT-30B
(right) on a single NVIDIA T4 (16 GB) GPU with 208 GB CPU
DRAM and 1.5TB SSD. FlexGen achieves a new Pareto-optimal
frontier with 100x higher maximum throughput for OPT-175B.
Other systems cannot further increase throughput due to out-of-

-%*- FlexGen (c)

20

FlexGen —#%— DeepSpeed —k— Accelerate

OPT-175B OPT-30B
A=k 23 P e e
r . el
¥ 24)
,. /
* >-1 i'- I
|
+
% I 5-3
211 213 28 29 210
Latency (s) Latency (s)

memory issues. “(c)” denotes compression.

Evaluation

» Offloading

 Runtime breakdown

Table 8. Execution time breakdown (seconds) for OPT-175B. The
prompt length 1s 512. (R) denotes read and (W) denotes write.

Stage Total Compute Weight (R) Cache (R) Cache (W)
Prefill 2711 2220 768 0 261
Decoding 11315 1498 3047 7046 124

The GPU compute utilization is 82% and 13% for prefill and decoding,
respectively

Evaluation

Table 4. Ablation study of proposed techniques. The numbers are
generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size x #GPU-batch, wag,
wc). More see Appendix A.4.

Model size

30B

175B

All optimizations
No policy search
No overlapping
No CPU compute
No disk

w/ DeepSpeed policy

7.32 (483, 20, 80)
7.26 (48x%3, 0, 100)
5.86
4.03
7.32
1.57

0.69 (328, 0, 50)
0.27 (32x1, 0, 50)
0.59

0.62

OOM

0.01

Evaluation

* Approximations

* Next-word prediction on Lambada (Paperno et al., 2016) and language
modeling on WikiText (Merity et al., 2016).

* “4- bit” means using group-wise quantization to compress both weights and
KV cache into 4-bit integers. “4-bit-S” means combining the quantization and
sparse attention with a 10% sparsity on the value cache

Table 5. The accuracy (higher is better) and perplexity (lower is
better) with approximate methods.

Dataset Lambada (acc) WikiText (ppl)
Config FP16 4-bit 4-bit-S FP16 4-bit 4-bit-S

OPT-30B 0.725 0.724 0.718 1272 1290 12.90
OPT-175B 0.758 0.756 0.756 10.82 1094 10.94

Evaluation

» Offloading vs. Collaborative Inference
* FlexGen and Petals under different network conditions

—4&— FlexGen 1xT4 —#— Petals 4xT4 10ms 0.1Gbps
Petals 4xT4 10ms 1Gbps —#— Petals 4xT4 100ms 0.1Gbps

160 —_
—_ {7
L 140 S
>]
& 120 S
) 5
© 100 z
5 a0 P
= W
© Q3
g 0 5
= 0_2
g 5
= =1

> 20 o . 1 N N

L = . ot o u
0 =0

5 10 15 20 25 30 5 10 15 20 25 30
Output sequence length Output sequence length

o
o

Figure 4. Full latency and per-GPU throughput of FlexGen and
Petals in different network delay and bandwidth.

Contributions

e Efficient offloading strategies

* Formulate the search space for loffloading policies
 Computation order, tensor placement, computation delegation

* A proof of 2x optimality
* A policy optimization algorithm

 4-bit quantization on weights & attention (KV) cache
* Extend to distributed GPUs with pipeline parallelism

e What is MILP in transformer?

* An MLP-Attention model employs a multi-layer perceptron (MLP) to
compute attention weights for sequences of word embeddings,
optionally with positional encodings. The MLP is designed to perform
multiple layers of nonlinear transformations on the input, and its
output serves as the attention weights.

FCL

Add

T

Add

Attn Out FC

FC2

FC1

OKW Linear

LaverNorm

T

1

1

INnput

Figure 22: Transformer layer of GPT.

