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Generative Models

* Example of Summarization Task

Prompt

A neutron star is the collapsed core of a massive supergiant star, which
had a total mass of between 10 and 25 solar masses, possibly more if
the star was especially metal-rich.[1] Neutron stars are the smallest
and densest stellar objects, excluding black holes and hypothetical
white holes, quark stars, and strange stars.[2] Neutron stars have a
radius on the order of 10 kilometres (6.2 mi) and a mass of about 1.4
solar masses.[3] They result from the supernova explosion of a
massive star, combined with gravitational collapse, that compresses
the core past white dwarf star density to that of atomic nuclei.

Tl.dr

Sample response

A neutron star is the collapsed core of a massive supergiant star. These
ultra-dense objects are incredibly fascinating due to their strange
properties and their potential for phenomena such as extreme
gravitational forces and a strong magnetic field.



Era of Generative Models
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Cost of Serving

*In Azure, a GPT3 175B instance requires 2 VMs, each of which has 8
NVIDIA A100 40GB GPUs

* At Azure US East, the VM price is $21.197/hour

So, the yearly price for hosting 400 GPT3 175B instance is
~190.6Million/year



This paper focuses on how to improve the
throughput of serving transformer-based
generative models to reduce the cost
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Inference of Generative Models

~




Characteristics of Inference of Generative
Models

* Multi iteration characteristic
- Generate one token at a time
* |nitiation phase (1% iteration)
- Process all input tokens at once
* Increment phase (2"? — last iterations)
- Process a single token generated from the previous iteration
- Use Attention keys and values of all previous tokens

e Save Attention keys and values for the following iterations to avoid
recomputation



Serving of Generative Language Models
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Serving of Generative Language Models
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Problem 1: Request Level Scheduling
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Problem 1: Request Level Scheduling
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Problem 1: Request Level Scheduling
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Problem 1: Request Level Scheduling

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I New!

Execution Engine

Responses

x3: A man

Request Queue

> : x1: | think

Model

2 x2: | love

-

™\

Wait until return from the
engine -> latency increase



Solution 1

Ilteration-Level Scheduling



Iteration Level Scheduling




Problem 2: Batching
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Batching Requirements

* There are three cases for a pair of requests where the next iteration
cannot be batched together:

(1) both requests are in the initiation phase and each has different
number of input tokens

(2) both are in the increment phase and each is processing a token at
different index from each other

or
(3) each request is in the different phase: initiation or increment



Batching Requirements

* That is batching is only applicable
*- Requests are at same phase
*- Requests are of same length



Solution 2: Selective Batching

Solution 2

Selective Batching



ORCA System Architecture
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ORCA System Architecture
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ORCA System Architecture
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Scheduling

e Simple first-come-first-served algorithm

* Efficient pipelining across multiple workers

* Memory management for saving the Attention keys and values
* Orca configures the maximum batch size knob



Evaluation Setup

* Model
- GPT-3 models upto 341B parameters
* Hardware Setup

- Azure ND96asr A100 v4 VMs, each equipped with 8 NVIDIA 40-GB A100
GPUs

- Each VM has 8 Mellanox 200Gbps HDR Infiniband adapters
* Baseline

- Execution Engine: NVIDIA FasterTransformer

- Inference Server: custom scheduler that mimics the batch scheduler of the
Trition inference server



Evaluation Setup

* Workload
-Synthesized the trace of client requests

- Request arrival time: Poisson process with varying request rate
-Input length: Uniform(32,512)

- Output length: Uniform(1,128)

* Metric — throughput-latency



Results
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Cost of Serving

* The yearly price for hosting 400 GPT3 175B instance is

*~190.6 Million/year ~5.7 Million/year
Baseline ‘ Orca



Conclusion

* Orca is the first serving system for Transformer-based generative
models that employs iterative scheduling and selective batching

* Orca improves the throughput of GPT-3 175B by up to 36.9X for the
same level of latency

* Orca is currently deployed in FriendlyAl’s cloud service



