Orca: A Distributed Serving
System for Transformer-Based
Generative Models

Gyeong-In Yu and Joo Seongjeon%, Seoul National University; Geon-Woo
Kim, FriendliAl and Seoul National University; Soojeon%
Kim, FriendliAl; Byung-Gon Chun, FriendliAl and Seoul National University

OSDI 2022

Generative Models

* Example of Summarization Task

Prompt

A neutron star is the collapsed core of a massive supergiant star, which
had a total mass of between 10 and 25 solar masses, possibly more if
the star was especially metal-rich.[1] Neutron stars are the smallest
and densest stellar objects, excluding black holes and hypothetical
white holes, quark stars, and strange stars.[2] Neutron stars have a
radius on the order of 10 kilometres (6.2 mi) and a mass of about 1.4
solar masses.[3] They result from the supernova explosion of a
massive star, combined with gravitational collapse, that compresses
the core past white dwarf star density to that of atomic nuclei.

Tl.dr

Sample response

A neutron star is the collapsed core of a massive supergiant star. These
ultra-dense objects are incredibly fascinating due to their strange
properties and their potential for phenomena such as extreme
gravitational forces and a strong magnetic field.

Era of Generative Models

DISTILBERT

GPT-2 \ KLNet

Transformer

2017-06 201712 2018-06 2018-12 2019-06

Cost of Serving

*In Azure, a GPT3 175B instance requires 2 VMs, each of which has 8
NVIDIA A100 40GB GPUs

* At Azure US East, the VM price is $21.197/hour

So, the yearly price for hosting 400 GPT3 175B instance is
~190.6Million/year

This paper focuses on how to improve the
throughput of serving transformer-based
generative models to reduce the cost

Inference of Generative Models

Inference of Generative Models

Inference of Generative Models

Inference of Generative Models

Inference of Generative Models

Inference of Generative Models

Inference of Generative Models

Inference of Generative Models

~

Characteristics of Inference of Generative
Models

* Multi iteration characteristic
- Generate one token at a time
* |nitiation phase (1% iteration)
- Process all input tokens at once
* Increment phase (2"? — last iterations)
- Process a single token generated from the previous iteration
- Use Attention keys and values of all previous tokens

e Save Attention keys and values for the following iterations to avoid
recomputation

Serving of Generative Language Models

requests

———p

responses

*-—

Inference Server

Eg.,

Triton Inference Server
TensorFlow Serving
TorchServe

schedule
execution

return
results

Serving of Generative Language Models

Maximum batch size =3

Inference Server
Execution Engine

Requests

> Scheduler > :

Model
! :
< x2: | love x1: 1think | [
Responses
Request Queue

Serving of Generative Language Models

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I

Responses

Request Queue

Execution Engine

Model

x1: | think

x2: | love

Serving of Generative Language Models

Maximum batch size =3

Inference Server
Execution Engine
Requests
> Scheduler - !
Model
! ;
- -
Responses x1: this is
Request Queue great

X2: you

Serving of Generative Language Models

Maximum batch size =3

Inference Server
Execution Engine

Requests

> Scheduler > :

Model
| !
< -
Responses
x1: this is Request Queue
great

X2: you

Problem 1: Request Level Scheduling

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I

Responses

Request Queue

Execution Engine

¥ x1: | think

Model

2 x2: | love

Problem 1: Request Level Scheduling

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I

Responses

Request Queue

lst

iteration

Execution Engine

x1: | think this

x2: | love you

Process the requests until they
are done

Problem 1: Request Level Scheduling

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I

Responses

Request Queue

2nd

iteration

Execution Engine

x1: | think this is

x2: | love you <EOS>

Cannot return to inference
server -> latency increase

x2’s
generation
done

Problem 1: Request Level Scheduling

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I

Responses

Request Queue

Execution Engine

Model

x1: | think

x2: | love

Started to process x1 and x2

Problem 1: Request Level Scheduling

Maximum batch size =3

Inference Server
Execution Engine
Requests hedul
> el > | x1:1think
Model
I New! : x2: | love
< x3: Aman | [
Responses
Request Queue

Started to process x1 and x2

Problem 1: Request Level Scheduling

Maximum batch size =3

Requests

-

-

Inference Server

Scheduler

I New!

Execution Engine

Responses

x3: A man

Request Queue

> : x1: | think

Model

2 x2: | love

-

™\

Wait until return from the
engine -> latency increase

Solution 1

Ilteration-Level Scheduling

Iteration Level Scheduling

Problem 2: Batching

Execution Engine
Scheduler el tm’i‘i]
requests

————————
bt dadected — | C x3: A man is |

ﬁAdogls

iter 3

responses

Request Pool

Batching Requirements

* There are three cases for a pair of requests where the next iteration
cannot be batched together:

(1) both requests are in the initiation phase and each has different
number of input tokens

(2) both are in the increment phase and each is processing a token at
different index from each other

or
(3) each request is in the different phase: initiation or increment

Batching Requirements

* That is batching is only applicable
*- Requests are at same phase
*- Requests are of same length

Solution 2: Selective Batching

Solution 2

Selective Batching

ORCA System Architecture

Y

Orca System

request| = N @
: ’g --------------- = .g L
= Scheduler | @ 1,2, 73,4 =5
Lf] @ --cccrccnccccacnaaan gg LICJ
response I i B
N i/ v®

Request Pool

r1|&11|T12| 13| T14| T3 | L31| L32

T2 |T21| T22 T4 |T41|T42|T43

ORCA System Architecture

Layerl Layer2 : Layer3 Layerd
GPUI i GPU4
........................... o S e .
GPU2 i GPUS
........................... + R -
GPU3 5 GPUG6

ORCA System Architecture

Scheduler

(GPU | .
Data Plane

-

Execution Engine tokens
Control Plane
ool control
messphge .
schedule mespage | Controller g »| Controller
—_—
/
. % tokiens
m
= z
o GPU
-ED ot -l e - = -
- &3 5 .
tokens GPU ’

Worker |

Worker 2

Scheduling

e Simple first-come-first-served algorithm

* Efficient pipelining across multiple workers

* Memory management for saving the Attention keys and values
* Orca configures the maximum batch size knob

Evaluation Setup

* Model
- GPT-3 models upto 341B parameters
* Hardware Setup

- Azure ND96asr A100 v4 VMs, each equipped with 8 NVIDIA 40-GB A100
GPUs

- Each VM has 8 Mellanox 200Gbps HDR Infiniband adapters
* Baseline

- Execution Engine: NVIDIA FasterTransformer

- Inference Server: custom scheduler that mimics the batch scheduler of the
Trition inference server

Evaluation Setup

* Workload
-Synthesized the trace of client requests

- Request arrival time: Poisson process with varying request rate
-Input length: Uniform(32,512)

- Output length: Uniform(1,128)

* Metric — throughput-latency

Results

Median of Normalized Latency (ms/token)

GPT-3 175B (16 GPUs)

—-—Baseline
—Qrca

0 2 4 6
Throughput (req/s)

Cost of Serving

* The yearly price for hosting 400 GPT3 175B instance is

*~190.6 Million/year ~5.7 Million/year
Baseline ‘ Orca

Conclusion

* Orca is the first serving system for Transformer-based generative
models that employs iterative scheduling and selective batching

* Orca improves the throughput of GPT-3 175B by up to 36.9X for the
same level of latency

* Orca is currently deployed in FriendlyAl’s cloud service

