
FlexGen: High-Throughput 
Generative Inference of Large 

Language Models with a Single GPU 
Ying Sheng 1 Lianmin Zheng 2 Binhang Yuan 3 Zhuohan Li 2 Max 

Ryabinin 4 5 Daniel Y. Fu 1 Zhiqiang Xie 1 Beidi Chen 6 7 Clark Barrett 1 
Joseph E. Gonzalez 2 Percy Liang 1 Christopher Re´ 1 Ion Stoica 2 Ce 

Zhang

1 Stanford University 2UC Berkeley 3ETH Zurich 4Yandex 5HSE University 
6Meta 7Carnegie Mellon University. 



Motivation 1: Making Large Models Accessible

To



Motivation 2: Throughput-Oriented LLM Use 
Cases

Latency-sensitive Tasks 
(e.g., Chatbot)

To

Throughput-Oriented Tasks 
(e.g., benchmarking, 
information extraction, data 
wrangling, Text/forms)



How to efficiently run LLMs with limited resources

Parameter size: 325 GB

NVIDIA T4
GPT-175B

Memory capacity: 16 GB



Results: Latency-throughput Trade-off

Workload:
• Running OPT-175B on a T4 GPU

Existing systems:
• Throughput of 0.01 token/s
• GPU utilization < 1%
• Bound by a very small batch size 

(<=2)

FlexGen:
• 69x higher throughput
• 128x larger batch size
• Also achieving lower latency

OPT: Open Pre-trained Transformer Language Model



Related work

• Prior efforts to lower resource requirements of LLM inference
• Model compression to decrease total memory footprint 

• Collaborative inference to amortize inference cost via decentralization

• Offloading to utilize memory from CPU and disk

• Shortcomings:
• Research in the first two directions often assume that the model fits into the 

GPU memory

• The third category do not achieve acceptable throughput on a single GPU due 
to inefficient I/O scheduling and tensor placement



Goal

Designing efficient offloading strategies for high-throughput 
generative inference, on a single commodity GPU



Method

Offload LLM to secondary storage and perform computation 
part-by-part by partially loading it.

NVIDIA T4 



Challenge 1: efficient offloading strategy

• There are three kinds of tensors: weights, activations, and key-value 
(KV) cache.

• Strategy specifies 
• what tensors to offload

• where to offload them within the three-level memory hierarchy

• when to offload them during inference

• The batch-by-batch, token-by-token, and layer-by-layer structure of 
the computation forms a complex dependency graph



Challenge 2: effective compression strategies

• When combining compression with offloading for high-throughput 
inference, the I/O costs and memory reduction of the weights and KV 
cache become more important, motivating alternative compression 
schemes



FlexGen: Proposed offloading framework

• FlexGen aggregates memory from the GPU, CPU, and disk, and efficiently 
schedules I/O operations, along with possible compression methods and 
distributed pipeline parallelism
• Contribution 1:

• Formally define a search space of possible offloading strategies by considering computation 
schedule, tensor placement, and computation delegation

• Search space captures a computation order with I/O complexity within 2× of optimality
• A linear programming-based search algorithm

• Contribution 2:
• Fine-grained groupwise quantization (Shen et al., 2020), which is suitable for reducing I/O 

costs and memory usage during offloading

• Contribution 3:
• Demonstrate the efficiency of FlexGen by running OPT-175B on NVIDIA T4 (16GB) GPUs



FlexGen: Proposed offloading framework 
(cont.)
• Two stages: 

• i) the prefill stage which takes a prompt sequence to generate the key-value cache (KV cache) 
for each transformer layer of the LLM; 

• ii) the decoding stage which utilizes and updates the KV cache to generate tokens step-by-
step

• Considering FP16, the total number of bytes to store the parameters can be 
roughly 1 calculated by l(8h1

2 + 4h1h2). The total number of bytes to store the KV 
cache in peak is 4 × blh1(s + n).

• Notations:
• b: batch size by b
• s: the input sequence length
• n: the output sequence length
• h1: the hidden dimension of the transformer
• h2: the hidden dimension of the second MLP layer
• l: the total number of transformer layers



FlexGen: Proposed offloading framework 
(cont.)
• OPT-175B model (l = 96, h1 = 12288, h2 = 49152) takes 325 GB. With 

a batch size of b = 512, an input sequence length s = 512, and an 
output sequence length of n = 32, the total memory required to store 
the KV cache is 1.2 TB, which is 3.8× the model weights

• Considering an effective batch size b, an input sequence length s, and 
an output sequence length of n, 
• Latency t is defined as the total number of seconds spent to process the 

prompts and generate all the bn tokens

• The generation throughput is defined as bn/t



FlexGen: Proposed offloading framework 
(cont.)
• The model has 4 layers and the system generate 3 tokens per prompt

• A square means the computation of a GPU batch for a layer

• The squares with the same color share the same layer weights



FlexGen: Proposed offloading framework 
(cont.)
• Define a valid path as a path that traverses (i.e., computes) all squares, 

while subject to the following constraints: 
• A square can only be computed if all squares to its left on the same row were 

computed
• To compute a square on a device, all its inputs (weights, activations, cache) must be 

loaded to the same device
• After being computed, a square produces two outputs: activations and KV cache. The 

activations should be stored until its right sibling is computed. The KV cache should 
be stored until the rightmost square on the same row is computed. 

• At any time, the total size of tensors stored on a device cannot exceed its memory 
capacity. 

• The goal is to find a valid path that minimizes the total execution time, 
which includes the compute cost and I/O cost when moving tensors 
between devices.



FlexGen: Proposed offloading framework 
(cont.)
• Search space

• Compute schedule

• Tensor placement

• Computation delegation

• Cost Model and Policy Search

• Extension to Multiple GPUs



FlexGen: Proposed offloading framework 
(cont.)
• All existing systems traverse the graph row-by-row

• Because every two contiguous squares do not share weights, this 
schedule has to repeatedly load the weights and incurs huge I/O costs



FlexGen: Proposed offloading framework 
(cont.) -- Search space
• To reduce the I/O costs of the weights, we can traverse the graph column-by-

column. 

• All squares in a column share weights, so we can let the weights stay on GPU for 
reusing and only load/unload the activations and KV cache.

• Stop when they fill the CPU and disk memory



FlexGen: Proposed offloading framework 
(cont.) -- Search space

Theorem 4.1. The I/O complexity of the zig-zag block 
schedule is within 2× of the optimal solution. 



FlexGen: Proposed offloading framework 
(cont.) -- Search space

• Another typical optimization is 
overlapping. 
• The weights load of the next layer

• Cache/activation load of the next batch

• Cache/activation store of the previous 
batch

• The computation of the current batch.



FlexGen: Proposed offloading framework 
(cont.) – Tensor placement
• How to store these tensors within the memory hierarchy

• Three variables wg, wc, and wd to define the percentages of weights stored on GPU, 
CPU, and disk respectively. 

• Three variables hg, hc, hd to define the percentages of activations 
• Three variables cg, cc, cd for the KV cache

• Partition the weights 
• At the model granularity (e.g., assign 50% of the layers in a model to the GPU)
• At the layer granularity (e.g., assign 50% of the tensors in a layer to the GPU)
• At the tensor granularity (e.g., assign 50% of the elements in a tensor to the GPU)

• Coarser granularity leads to lower runtime overhead but it is less flexible 
and its cost is difficult to analyze

• Use layer granularity for weights, and tensor granularity for activations and 
the KV cache.



FlexGen: Proposed offloading framework 
(cont.) – Computation delegation
• Computing the attention scores on the GPU requires moving the 

entire KV cache to the GPU, which incurs a substantial I/O cost as the 
KV cache is huge

• Computing the attention score on the CPU does not require moving 
the KV cache. It only requires moving the activations from the GPU to 
the CPU. 

• For long sequences (e.g., s ≥ 512), it is better to compute the 
attention scores on the CPU if the associated KV cache is not stored 
on the GPU.



FlexGen: Proposed offloading framework 
(cont.) – Cost Model and Policy Search
• The cost model predicts the latency during prefill for one layer denoted as 

Tpre, and the averaged latency during decoding for one layer denoted as 
Tgen in one block

• The total latency for computing a block can then be estimated as:
• T = Tpre · l + Tgen · (n − 1) 

• Tpre can be estimated as Tpre = max(ctogp , gtocp , dtocp , ctodp , compp ), 
where ctogp , gtocp , dtocp , ctodp , compp denote the latency of read 
from CPU to GPU, write from GPU to CPU, read from disk to CPU, write 
from CPU to disk, computation, respectively, during prefill for one layer

• Tgen can be estimated as Tgen = max(ctogg , gtocg , dtocg , ctodg , compg ), 
with ctogg , gtocg , dtocg , ctodg , compg denoting the latency of read from 
CPU to GPU, write from GPU to CPU, read from disk to CPU, write from CPU 
to disk, computation, respectively, during decoding for one layer



FlexGen: Proposed offloading framework 
(cont.) – Cost Model and Policy Search
• A policy includes 11 variables: block size bls, GPU batch size gbs, 

weight placement wg, wc, wd, activation placement hg, hc, hd, and 
KV cache placement cg, cc, cd.

• Enumerate a few choices of (bls, gbs) tuple. Typically, gbs is a multiple 
of 4, and bls is less than 20 so there are not too many choices. 

• Then with the fixed bls, gbs, finding the best placement p = (wg, wc, 
wd, cg, cc, cd, hg, hc, hd) becomes a linear programming problem 
shown in Eq. (1).



FlexGen: Proposed offloading framework 
(cont.) – Cost Model and Policy Search



FlexGen: Proposed offloading framework 
(cont.) – Extension to Multiple GPUs
• If we are given more GPUs and more CPUs, model parallelism can be 

utilized to reduce the memory pressure of each GPU

• Two kinds of model parallelisms: 
• Tensor: reduce the single-query latency

• Pipeline parallelism: achieve good scaling on throughput due to low 
communication cost

• FlexGen implements pipeline parallelism

• Use pipeline parallelism by equally partitioning an l-layer LLM on m 
GPUs, and then the execution of all GPUs follows the same pattern



FlexGen: Proposed offloading framework 
(cont.) – Approximate Methods
• Group-wise Quantization

• Both the weights and KV cache can be directly quantized into 4-bit integers 
without any retraining or calibration on OPT-175B, all while preserving similar 
accuracy

• Previous quantization methods are for accelerated computation, the goal of 
quantization in this case is primarily for compression and reducing I/O costs
• Choose a fine-grained quantization format in favor of a high compression ratio and 

dequantize the tensors back to FP16 before computation

• Given a tensor, choose g contiguous elements along a certain dimension as a 
group. For each group, we compute the min and max of the group elements 
and quantize each element x into b-bit integers by 

x quant = round {(x−min)/(max−min) × (2b − 1)}



FlexGen: Proposed offloading framework 
(cont.) – Sparse Attention
• Sparse attention 

• We demonstrate that the sparsity of self-attention can be exploited by only 
loading the top 10% attention value cache on OPT-175B

• Top-K sparse approximation
• After computing the attention matrices, for each query, calculate the indices of its Top-K 

tokens from the K cache

• Simply drop the other tokens and only load a subset of the V cache according to the 
indices



Evaluation

• Hardware
• NVIDIA T4 GPU instances from Google Cloud

• The read bandwidth of SSD is about 2GB/s and the write bandwidth is about 1GB/s

• Model
• OPT models with 6.7B to 175B parameters
• GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022), and BLOOM (Scao et al., 

2022) share a similar structure



Evaluation

• Workload
• Synthetic datasets where all prompts are padded to the same length: 512 and 1024
• The system is required to generate 32 tokens for each prompt

• Baseline
• DeepSpeed ZeRO-Inference (Aminabadi et al., 2022)
• Hugging Face Accelerate (HuggingFace, 2022) 

• Both of them use the row-by-row schedule and can only put cache/activations on GPU
• Petals (Borzunov et al., 2022; Ryabinin et al., 2023) 

• Implementation
• FlexGen is implemented on top of PyTorch (Paszke et al., 2019)
• FlexGen manages multiple CUDA streams and CPU threads to overlap I/O with 

compute
• FlexGen creates files for tensors stored on the disk and maps them as virtual 

memory to access them



Evaluation

• Offloading
• Maximum throughput benchmark

1 GPU

4 GPUs



Evaluation

• Offloading
• Latency-throughput trade-off



Evaluation

• Offloading
• Runtime breakdown

The GPU compute utilization is 82% and 13% for prefill and decoding, 
respectively



Evaluation



Evaluation

• Approximations
• Next-word prediction on Lambada (Paperno et al., 2016) and language 

modeling on WikiText (Merity et al., 2016). 

• “4- bit” means using group-wise quantization to compress both weights and 
KV cache into 4-bit integers. “4-bit-S” means combining the quantization and 
sparse attention with a 10% sparsity on the value cache



Evaluation

• Offloading vs. Collaborative Inference
• FlexGen and Petals under different network conditions



Contributions

• Efficient offloading strategies
• Formulate the search space for loffloading policies

• Computation order, tensor placement, computation delegation

• A proof of 2x optimality

• A policy optimization algorithm

• 4-bit quantization on weights & attention (KV) cache

• Extend to distributed GPUs with pipeline parallelism





• What is MLP in transformer?

• An MLP-Attention model employs a multi-layer perceptron (MLP) to 
compute attention weights for sequences of word embeddings, 
optionally with positional encodings. The MLP is designed to perform 
multiple layers of nonlinear transformations on the input, and its 
output serves as the attention weights.




